3x^2+6x+4=12

Simple and best practice solution for 3x^2+6x+4=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+6x+4=12 equation:


Simplifying
3x2 + 6x + 4 = 12

Reorder the terms:
4 + 6x + 3x2 = 12

Solving
4 + 6x + 3x2 = 12

Solving for variable 'x'.

Reorder the terms:
4 + -12 + 6x + 3x2 = 12 + -12

Combine like terms: 4 + -12 = -8
-8 + 6x + 3x2 = 12 + -12

Combine like terms: 12 + -12 = 0
-8 + 6x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-2.666666667 + 2x + x2 = 0

Move the constant term to the right:

Add '2.666666667' to each side of the equation.
-2.666666667 + 2x + 2.666666667 + x2 = 0 + 2.666666667

Reorder the terms:
-2.666666667 + 2.666666667 + 2x + x2 = 0 + 2.666666667

Combine like terms: -2.666666667 + 2.666666667 = 0.000000000
0.000000000 + 2x + x2 = 0 + 2.666666667
2x + x2 = 0 + 2.666666667

Combine like terms: 0 + 2.666666667 = 2.666666667
2x + x2 = 2.666666667

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 2.666666667 + 1

Reorder the terms:
1 + 2x + x2 = 2.666666667 + 1

Combine like terms: 2.666666667 + 1 = 3.666666667
1 + 2x + x2 = 3.666666667

Factor a perfect square on the left side:
(x + 1)(x + 1) = 3.666666667

Calculate the square root of the right side: 1.914854216

Break this problem into two subproblems by setting 
(x + 1) equal to 1.914854216 and -1.914854216.

Subproblem 1

x + 1 = 1.914854216 Simplifying x + 1 = 1.914854216 Reorder the terms: 1 + x = 1.914854216 Solving 1 + x = 1.914854216 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.914854216 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.914854216 + -1 x = 1.914854216 + -1 Combine like terms: 1.914854216 + -1 = 0.914854216 x = 0.914854216 Simplifying x = 0.914854216

Subproblem 2

x + 1 = -1.914854216 Simplifying x + 1 = -1.914854216 Reorder the terms: 1 + x = -1.914854216 Solving 1 + x = -1.914854216 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.914854216 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.914854216 + -1 x = -1.914854216 + -1 Combine like terms: -1.914854216 + -1 = -2.914854216 x = -2.914854216 Simplifying x = -2.914854216

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.914854216, -2.914854216}

See similar equations:

| r=ht | | 81k^2+-1=8 | | 9(9-8x-4x)+8(3x+4)=11 | | r+m=b | | x^3-61=3 | | -4x^2+8x+11=0 | | 12t^2=27+27t | | .5x^2+2x-30=0 | | 10w^2-200=0 | | 8x+-2=6x | | 8x-2=6x | | w^2+11w-200=0 | | lnx=-4.833559 | | (8b^4-b^3)-(b^4+4b^3-4)= | | 4x^4+2x^3-108x-54=0 | | y^2+8x+16=0 | | x^3-9*x-1=0 | | y^2+6x+14y+43=0 | | 2y^2+14y+43=0 | | -16x^2+64x+128=0 | | -16x^2+64x+28=0 | | 8(-2x^2+8x+4)=0 | | 16x^2-25y^2+32x-100y+84=0 | | 0=x(5x+.5)-168 | | 32x^2-9x=0 | | 300=p(.03)(10) | | -16t^2+64x+32=0 | | 13r+1=3r-19 | | 6-24=48 | | 9x^2+2=10 | | 2x-3y+z=1 | | 9h+5=86 |

Equations solver categories